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Abstract 
 
As the blood flow characteristics are closely related to various cardiovascular diseases, it is very important to predict 

them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral element model for 
human blood vessels with varying cross-sections. The spectral element model is formulated by using the variational 
approach of finite element formulation. The wave solutions analytically solved in the frequency-domain to satisfy gov-
erning equations are used to determine the frequency-dependent interpolation functions. The spectral finite element 
model is then applied to an example blood vessel to investigate the blood flow rate and blood pressure through the 
blood vessel.  
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1. Introduction 

The blood flow characteristics determine the wall 
shear stress and wall tension. As the wall shear stress 
and wall tension are closely related to the cardiovas-
cular diseases such as stenosis and aneurysm, it is 
very important to predict the blood flow characteris-
tics accurately in an efficient way for the cardiovascu-
lar disease research, medical devise design and surgi-
cal planning. To this end, computational methods 
have merged as the powerful tools for the modeling 
and analysis of the blood flow and pressure in arteries. 

Modeling of blood flow and pressure has been 
studied intensively over the years, and various com-
putational models have been reported [1-8]. The one-
dimensional (1D) models have been widely used 
because they can provide clinically relevant informa-
tion on local mean blood flow and pressure waves 
through arterial systems very efficiently as well as the 
boundary conditions suitable for three-dimensional 
(3D) models [4, 5]. For solving 1D models of blood 

flow, the two-step Lax-Wendroff method [3] and 
finite element method (FEM) [6-8] have been applied. 
The 1D modeling of a vascular network in space-time 
variables was also considered by Sherwin et al. [9]. 
However, to the authors’ best knowledge, the spectral 
element method (SEM) has never been applied to the 
modeling and analysis of the blood flows through 
human blood vessels. 

The FEM is certainly a very powerful tool for solv-
ing diverse complex engineering problems. However, 
as the simple polynomials which are not related to the 
frequency of vibration are used as the interpolation 
functions to formulate the conventional finite element 
models, it is often inevitable to use very fine meshes 
to improve the FEM solutions, especially at high fre-
quency. This may increase the computation cost sig-
nificantly. In contrast to FEM, the spectral element 
method (SEM) is known as an exact element method 
because the exact wave solutions satisfying governing 
equations of motion in the frequency-domain are used 
as the frequency-dependent interpolation functions to 
formulate spectral finite element models [10, 11]. 
Thus, SEM may allow us to get very accurate dy-
namic response for a 1D structure by modeling the 
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whole structure of any length as a single element in 
the absence of any discontinuity or irregularity in 
geometrical and material properties, which may bene-
fit us to drastically reduce the computation cost. 

As the SEM has never been applied to the model-
ing and analysis of the blood flows, the purposes of 
this paper are: (1) to develop a spectral element model 
for the blood flows through human blood vessels by 
improving the previous study [12], and (2) to apply 
the spectral element model to investigate the blood 
flow characteristics for various velocity profiles of 
blood flow. 

 
2. Governing equations 

The 1D theory of arterial flow consists of a conti-
nuity equation, an axial momentum balance equation, 
and a constitutive equation for the flow in an imper-
meable, deforming, elastic domain as [2, 3]: 

 
0S Q′+ =                            (1)  

21 / / /Q ( )(Q S ) (S )P H(Q S ) Qρ ν ν′ ′′+ + ∆ + = +    (2) 

( ) ( ) ( )( , ), , (4 / 3) / 1 / ( , )d d dP S x t x t P Eh r S S x t= + −                              

 (3) 
 

where S is the cross-sectional area, Q is the volumet-
ric flow rate, P is the pressure, ρ is the mass density 
of blood, ν is the kinematic viscosity of blood, E is 
the Young’s modulus of blood vessel, and h is the 
wall thickness of blood vessel. Sd and rd are the uni-
form cross-sectional area and radius at diastole pres-
sure Pd = 80 mmHg. The parameters ∆ and H are 
determined by the blood flow velocity profile over the 
cross-section of a blood vessel [2, 3]: ∆ = 0 and H = 0 
for the uniform flow (Fig. 1a); ∆ = 1/3 and H = 8π for 
the parabolic flow (Fig. 1b); ∆ = (2/3)δ/rd = 0.0667 
and H = 2πrd/δ = 20π for the boundary layer flow, 
where δ denotes the boundary layer thickness (Fig. 1c). 
Note that the dot and the prime represent the deriva-
tive with respect to time t and coordinate x, respec-
tively. Olufsen [3] derived the empirical expression for 
Eh/rd in the constitutive equation as follows: 
 

 
(a)               (b)               (c) 

 
Fig. 1. Types of blood flow velocity profiles over the cross-
section of a blood vessel: (a) uniform flow, (b) parabolic flow, 
and (c) boundary layer (BL) flow. 

1 2 3/ ( )d dEh r k exp k r k= +               (4) 
 

where k1 = 2×107 g⋅s-2⋅cm-1, k2 = - 22.53 cm-1, and k3 = 
8.65×105 g⋅s-2⋅cm-1 [3, 7]. 

Assume that the blood pressure and cross-sectional 
area can be written as 

 
( ) ( ) ( ) ( ) ( ), , , , ,d dS x t S x s x t P x t P p x t= + = +                 

 (5) 
 

where s(x, t) and p(x, t) are the small perturbations 
with respect to the values at diastole phase. The cross-
sectional area at the diastole phase is assumed to vary 
as 

 
0( ) (1 )dS x S xθ= −   (θ x < 1)         (6) 

 
where S0 is the cross-sectional area at the inlet of an 
blood vessel and θ is the parameter which represents 
the taper of the blood vessel. 

Substitute Eq. (5) into Eq. (3) and then apply Eqs. 
(4) and (6) to get 

 
( ) ( )( ) ( )0, 2 / 3 / /d dp x t Eh r s S s Sα≅ ≅         (7) 

 
Where 
 

1 2 32 / 3 (2 / 3)[ exp( ) ]d dEh r k k r kα = = +     (8) 
 

Substituting Eq. (5) into Eqs. (1) and (2), we get ap-
proximated expressions as 
 

0s Q′+ ≅                              (9) 

( )( ) ( )
( )( )

2(1 ) / 1 / /

/ 1 /

d d d

d d

Q Q S s S S s p

H Q S s S Q

ρ

ν ν

⎡ ⎤ ⎡ ⎤ ′+ + ∆ − + +⎣ ⎦⎢ ⎥⎣ ⎦
′′≅ − +

  (10) 

 
Applying Eq. (7) into Eqs. (9) and (10) to replace s(x, 
t) with p(x, t) and then using the assumptions Sd    > s(x, 
t) and θ x < 1, we can get simplified continuity and 
momentum equations as 
 

0 1 0a p a Q′+ =                       (11)               

0 2 3 ( , )a p Q a Q a Q f x t′ ′′+ + − =        (12) 
 

where  
 

4 5 6 7
2 2 2

8 9 10

( , )f x t a QQ a pQ a p p a pQQ

a p Q a Q a pQ

′ ′ ′= − + − +

′+ − +
  (13) 
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And 
 

0 0 / ,a S ρ=   1 / ,a α ρ=   2 0/a H Sν=                        

3 ,a ν=   ( )4 02 1 /a S= + ∆   

5 0/( ),a H Sν α=  6 0 /( )a S αρ=    (14) 

( )7 02 1 /( ),a Sα= + ∆  ( )8 01 /( )a Sα= + ∆   

9 0(1 ) / ,a Sθ= + ∆  10 0(1 ) /a Sθ α= + ∆  
 

Note that all nonlinear terms are collected in the right-
hand side of Eq. (12) and denoted by the function f(x, 
t). When compared with the previous study [12], one 
may find that the last two terms of Eq. (13) are newly 
added. The function f(x, t) will be considered as the 
pseudo-force for the application of an iterative 
method for nonlinear problems. 

 
3. Spectral Element Model 

3.1 Weak forms in the frequency domain 

We basically follow the same procedure of spectral 
element formulation as used in the previous study 
[12]. Based on the discrete Fourier transform (DFT) 
theory [13], we first assume the time histories of p(x, 
t), Q(x, t), and f(x, t) in the spectral forms as 

                                                           

( ) ( )
1

0

1, n

N
i t

n
n

p x t p x e
N

ω
−

=

= ∑              (15) 

( ) ( )
1

0

1, n

N
i t

n
n

Q x t Q x e
N

ω
−

=

= ∑                (16) 

( ) ( )
1

0

1, n

N
i t

n
n

f x t f x e
N

ω
−

=

= ∑            (17)        

 
where ( ),np x ( ),nQ x  and ( )nf x  are the Fourier 
components of p(x, t), Q(x, t), and f(x, t), respectively; 
ωn = 2πn/T (n = 0,1,2,…, N) where T is the period and 
N is the number of samples defined in the DFT theory 
[13].  

Substitution of Eqs. (15-17) into Eqs. (11) and (12) 
yields the governing equations for ( )nQ x  and 

( )np x  as 
 

( )2 2
11 0n n n n n n nc Q i Q fω η σ′′ + − + =            (18) 

( )2 2
21 0n n n n n n nc p i p gω η σ′′ + − + =            (19) 

 
where ( )ng x  are the Fourier components of g(x, t) = 

f′(x, t) and the following definitions are used. 
 

( )
2 2 2 2
1 3 3 1 2

1 2 3 1 2 3
2

3 1 1 31
1 2

1 2 3 3 0 1 2 3

,

( )
1 ,

( )

n n
n n

n

n n
n n

n

a a a a a
c

a a a a a a

a a a i aai
a a a a a a a a

ω ωη
ω

ω ωσ σ
ω

+ +
= =

− −
⎧ ⎫⎛ ⎞ −⎪ ⎪= + = −⎜ ⎟⎨ ⎬⎜ ⎟− −⎪ ⎪⎝ ⎠⎩ ⎭

              

 (20) 
 

Multiplying Eq. (18) by ( )nQ xδ , and Eq. (19) by 
( )np xδ , and then integrating by parts, and finally 

using the relation 0n ni a pω 0nQ′+ = derived from Eq. 
(11), we obtain the weak forms as follows: 
 

( )2 2

0 0

2
1 0 00

1

0

l l
n n n n n n n

l l
n n n n n n n

c Q Q dx i Q Q dx

f Q dx i c a p Q

δ ω η δ

σ δ ω δ

′ ′ − −

+ + =

∫ ∫

∫
     (21) 

( )2 2

0 0

2
2 00

1

0

l l
n n n n n n n

l l
n n n n n n

c p p dx i p p dx

g p dx c p p

δ ω η δ

σ δ δ

′ ′ − −

′− − =

∫ ∫

∫
      (22) 

 
Consider a function z3(x, t) defined by the multipli-

cation of two functions z1(x, t) and z2(x, t) as 
 

( ) ( ) ( )3 1 2, , ,z x t z x t z x t=              (23) 

 
Define 1( ),nZ x 2( )nZ x  and 3( )nZ x as the Fourier 
components of z1(x, t), z2(x, t) and z3(x, t), respectively. 
Then, by applying the DFT theory to Eq. (23), one 
can obtain the relation as 
 

( ) ( ) ( ) ( ) ( )
1

3 1 2 1 2

0 1

1
n N

n j n j j N n j
j j n

Z x Z x Z x Z x Z x
N

−

− + −
= = +

⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑

 
                             (24) 
 

The Fourier components ( )nf x  of the pseudo-force 
f(x, t), which is the nonlinear function of p(x, t) and 
Q(x, t), can be expressed in terms of ( )np x  and 

( )nQ x  by repeatedly applying the formula, Eq. (24), 
to each nonlinear term in f(x, t). 

 
3.2 Spectral element formulation 

To formulate the spectral element, we consider the 
linear homogeneous governing equations reduced 
from Eqs. (18) and (19) as 
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( )2 2 1 0n n n n nc Q i Qω η′′ + − =               (25) 

( )2 2 1 0n n n n nc p i pω η′′ + − =                   (26) 
 

with the relevant boundary conditions  
 

1 2 1 2(0) , ( ) , (0) , ( )n n n n n n n nQ Q Q l Q p p p l p= = = =               

   (27) 
 
The solutions of Eqs. (25) and (26) can be obtained 

in terms of the dynamic shape function matrix N(x, 
ωn) and the nodal degrees of freedom (DOFs) nQ  = 
{ 1nQ  2nQ }T and np  = { 1np  2np }T as 

 
( ) { }
( ) { }

( , )

( , )

n n n

n n n

Q x x

p x x

ω

ω

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

N

N

Q

p
                    (28) 

 
where  
 
[ ( , )] [csc( )sin( ) csc( )sin( )]n n n n n nx k l k l k x k l k xω = −N  

( / ) 1n n n nk c iω η= −      (29) 
 
Substitution of Eq. (28) into Eqs. (21) and (22) 

gives 
 

( ) { } { } { }1 1n n n nω⎡ ⎤ = +⎣ ⎦S Q f F                 (30) 

 
and  
 

( ) { } { } { }2 2n n n nω⎡ ⎤ = +⎣ ⎦S p f F                (31) 

 
where   
 

( ) ( )2 2 1
0 0

l l
c dx i dxn n n nω ω η⎡ ⎤ ′ ′= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ∫ ∫T TS N N N N     

{ }1 1
0

( , ) ( )
l

n n n cQ p f x dxσ≅ ⎡ ⎤⎣ ⎦∫ Tf N              (32) 

{ } { }2
1 0n n n ni c aω=F p   

{ }2 2
0

( , ) ( )
l

n n n cQ p g x dxσ≅ ⎡ ⎤⎣ ⎦∫ Tf N                                                     

{ } { }2 1
2 0n n n ni c aω −=F Q  

 
The matrix [S(ωn)] is the spectral element matrix 

which is frequency dependent. The spectral element 
equations, Eq. (30) and Eq. (31), can be combined 

and assembled in the exactly same way as used in the 
conventional FEM, followed by the application of 
relevant boundary conditions [10, 11].  

The terms in the right-hand sides of Eqs. (30) and 
(31) contain unknown Fourier spectra np  and nQ . 
Thus, we need to solve Eqs. (30) and (31) for np  
and nQ  by using an iterative method. Once np  and 

nQ  are computed, we compute the Fourier spectra 
( )np x  and ( )nQ x at an arbitrary location x from Eq. 

(28). Finally, we compute the time histories of p(x, t) 
and Q(x, t) from Eq. (15) and Eq. (16), respectively, 
based on the DFT theory. In SEM, the computation of 
time histories is efficiently conducted by using the 
inverse fast Fourier transform (FFT) algorithm [10, 
11].   

 
4. Numerical results and discussion 

The spectral element model developed in this paper 
is applied to a blood vessel of length L as shown in 
Fig. 2, where r0 = 1.25 cm. The blood properties are 
given by ρ = 1.055 g/cm3 and ν = 0.046 cm2/s. The 
blood flow rate and pressure are computed by assum-
ing that the pulsatile blood flow rate at the inlet (i.e., x 
= 0 cm) is given by Fig. 3 and the perturbed blood 
pressure at the inlet is zero, i.e., p(x, t) = 0 mmHg or 
P(0, t) = 80 mmHg. Fig. 1 shows the blood flow ve-
locity profiles over the cross-section of the blood 
vessel, which are considered for numerical computa-
tions in this study: uniform flow, parabolic flow and 
boundary layer (BL) flow (uniform flow in the core 
region and linear velocity profile in the boundary 
layer). The numerical results obtained by using the 
present spectral element model are displayed in Fig. 4 
through Fig. 9. To compute the time histories of 
blood flow rate and pressure, N = 213 (the number of 
samples) is used for the FFT and inverse FTT appli-
cations. 

Fig. 4 shows the blood flow rate and the perturbed 
blood pressure at the distance of 3.5 cm from the inlet 
of blood vessel (i.e., x = 3.5 cm) when the uniform 
flow profile is used. Because the blood flow rate 
specified at the inlet of blood vessel is pulsatile, the  

 

  
Fig. 2. The geometry of a blood vessel. 
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blood flow rate and the (perturbed) blood pressure 
predicted at x = 3.5 cm are also pulsatile. The pre-
dicted perturbed blood pressure has a value between 0 
mmHg and 40 mmHg: this means that the blood pres-
sure of a healthy person is between 80 mmHg and 
120 mmHg. 

First, to evaluate the high accuracy of the present 
spectral element model, the blood flow rates and 
blood pressures computed by using the present SEM 
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Fig. 3. The blood flow rate at the inlet of an example blood 
vessel considered for numerical computation. 
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Fig. 4. The blood flow rate and perturbed blood pressure at x 
= 3.5 cm for the uniform flow. 

are compared with those computed by using the FEM 
model formulated in this study. The FEM model is 
given in Appendix A. To get the FEM results shown 
in Fig. 5, the Runge-Kutta algorithm of MATLAB is 
used with a time-step size of 0.01 seconds, which is 
chosen to provide sufficiently converged reliable 
solutions. As shown in Fig. 5, only two finite ele-
ments are used for the SEM, while the number of 
finite elements is increased for the conventional FEM 
to get improved results. As the extremely high accu-
racy of SEM has been already proved in many related 
articles, Fig. 5 certainly shows that FEM results con-
verge to SEM results as the number of finite elements 
used in the conventional FEM is increased.  Based 
on the proof of the high accuracy of the present spec-
tral element model, spectral element analyses are 
conducted to investigate the blood flow through the 
example blood vessel, and their results are displayed 
in Fig. 6 through Fig. 8 for the case of uniform flow. 

Fig. 6 shows the effects of the taper of the varying 
cross-section of blood vessel on the blood pressure. A 
blood vessel with narrowing cross-section has lower 
blood pressure than one with uniform cross-section. 
This is true because the flow velocity must increase to 
make an input quantity of blood flow through the 
narrow cross-section, which may in turn decrease the 
pressure by Bernoulli's principle. 

Fig. 7 compares the perturbed blood pressures at 
three different locations: x = 0 cm, 3.5 cm, and 7 cm. 
It is obvious from Fig. 7 that the blood pressure at 
farther distance is delayed due to the distance be-
tween chosen locations. We can also observe from  

  

  
 
Fig. 5. Comparison of the blood flow rate and pressure ob-
tained by using the present SEM and the conventional FEM 
for the uniform flow.    
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Fig. 6. The perturbed blood pressure vs. the taper of the 
cross-sectional area of blood vessel for the uniform flow. 

 

  
Fig. 7. The perturbed blood pressures at different locations (x 
= 0, 3.5, 7 cm) for the uniform flow. 

 
Fig. 7 that the magnitude of blood pressure decreases 
as the blood flows downwards due to the effects of 
blood viscosity. 
As the cardiovascular system is a huge network of 
blood vessels, the length of a blood vessel originating 
from the heart can be considered semi-infinite. In the 
element methods such as the conventional FEM and 
the present SEM, it is not always easy to deal with 
such semi-infinite length of blood vessel. So it may 
be important to investigate the effects of the finite 
length of blood vessel on the predicted characteristics 
of blood flow. To this end, Fig. 8 shows the blood 
flow rates and blood pressures (at x = 3.5 cm) for 
different total lengths of blood vessel. As expected, 
the shortest blood vessel shows the strongest effects 
of the wave reflection at the far down end of blood 
vessel. As the total length of a blood vessel is in-
creased, the effects of wave reflection are getting 
smaller to smooth the curves of the blood flow rate 
and blood pressure. This implies that it is important to 
accurately take into account the effects of wave re-
flection at the far down end of a blood vessel to get 
more accurate blood flow characteristics within the 
blood vessel. 

  

  
 

Fig. 8. The blood flow rates and perturbed blood pressures at 
x = 3.5 cm for different lengths of blood vessel for the uni-
form flow. 

 

 
 

  
Fig. 9. The blood flow rates and perturbed blood pressures at 
x = 3.5 cm for different blood flow velocity profiles: uniform 
flow, parabolic flow and boundary layer (BL) flow. 

 
The blood flow velocity profile may depend on the 

fluid properties of blood (i.e., viscosity, density, etc.) 
as well as on the geometry of blood vessel. Thus, we 
considered three types of blood flow velocity profiles 
as shown in Fig. 3. The blood flow rate and blood 
pressure at x = 3.5 cm for each blood flow velocity 
profile are compared in Fig. 9. For the case of bound-
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ary layered flow, the boundary layer thickness δ = 
0.125 cm is used. Though there is no significant dif-
ference between blood flow velocity files, the uni-
form flow profile seems to provide the largest blood 
flow rate and blood pressure, while the boundary 
layered flow profile provides the smallest values. 

 
5. Conclusion 

In this paper, a one-dimensional spectral element 
model is developed for human blood vessels with 
slowly varying cross-sections. The spectral element is 
formulated by using the wave solutions satisfying 
governing equations in frequency-domain as the fre-
quency-dependent interpolation functions. The spec-
tral element model is then applied to a blood vessel to 
investigate the blood flow rate and pressure for vari-
ous flow velocity profiles. It is numerically shown 
that the present spectral element model provides real-
istic blood flow through the example blood vessel 
considered in this study. It is also investigated that the 
length of blood vessel is somewhat important to suc-
cessfully take into account the effects of the blood 
waves reflected from the downstream end of blood 
vessels. 
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Appendix  

A: Finite element model 

The finite element model used in this study is for-
mulated by using the flow fields assumed as 
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( ) 1 / /x x l x l⎡ ⎤ = −⎡ ⎤⎣ ⎦⎣ ⎦N              (A2) 

By substituting Eq. (A1) into the weak forms of 
Eqs. (5) and (6), we get the finite element equations 
as follows: 
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with the use of definitions as 
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